Fast multiresolution methods for density functional theory in nuclear physics
نویسندگان
چکیده
We describe a fast real-analysis based O(N) algorithm based on multiresolution analysis and low separation rank approximation of functions and operators for solving the Schrödinger and Lippman-Schwinger equations in 3-D with spin-orbit potential to high precision for bound states. Each of the operators and wavefunctions has its own structure of refinement to achieve and guarantee the desired finite precision. To our knowledge, this is the first time such adaptive methods have been used in computational physics, even in 1-D. Accurate solutions for each of the wavefunctions are obtained for a sample test problem. Spin orbit potentials commonly occur in the simulations of semiconductors, quantum chemistry, molecular electronics and nuclear physics. We compare our results with those obtained by direct diagonalization using the Hermite basis and the spline basis with an example from nuclear structure theory.
منابع مشابه
Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree-Fock and density functional theory.
An efficient and accurate analytic gradient method is presented for Hartree-Fock and density functional calculations using multiresolution analysis in multiwavelet bases. The derivative is efficiently computed as an inner product between compressed forms of the density and the differentiated nuclear potential through the Hellmann-Feynman theorem. A smoothed nuclear potential is directly differe...
متن کاملDensity and Polarization Profiles of Dipolar Hard Ellipsoids Confined between Hard Walls: A Density Functional Theory Approach
The density and polarization profiles of the dipolar hard ellipsoids confined between hard walls are studied using the density functional theory (DFT). The Hyper-Netted Chain (HNC) approximation is used to write excess grand potential of the system with respect to the bulk value. The number density is expanded up to zero and first order in polarization to find the results. For the zero order in...
متن کاملWavelet approximations of the Hamiltonian operator and computation of related energies
Multiresolution analysis in Quantum Chemistry provide e cient computational methods. In this article, we propose several representations of the Hamiltonian operator arising from the Density Functional Theory, based on orthogonal and interpolating scaling function bases. These high order approximations allows to compute the potential and kinetic energies with a linear complexity. Finally numeric...
متن کاملElastic constants and their variation by pressure in the cubic PbTiO3 compound using IRelast computational package within the density functional theory
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'} span.s1 {font: 12.0px 'B Nazanin'} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'} span.s1 {font: 12.0px 'B Nazanin'} In this paper, we study the structural and electronic properties of the cubic PbTiO3 compound by using the density functional the...
متن کاملDensity Functional Studies on Crystal Structure and electronic properties of Potassium Alanate as a candidate for Hydrogen storage
Potassium Alanate is one of the goal candidates for hydrogen storage during past decades. In this report, initially the Density Functional Theory was applied to simulate the electronic and structural characteristic of the experimentally known KAlH4 complex hydride. The relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev ...
متن کامل